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A class of “fully-Lagrangian”™ methods for solving systems of conser-
vation equations is defined. The key step in formulating these methods
is the definition of a new set of field variables for which Lagrangian
discretization is trivial. Recently popular lattice-Boltzmann simulation
schemes for solving such systems are shown to be a useful sub-class of
these fully-Lagrangian methods in which (a) the conservation laws are
satisfied at each grid point, {b) the Lagrangian variables are expanded
perturbatively, and {c) discretization error is used to represent physics.
Such schemes are typically derived using methods of kinetic theory.
Our numericatl analysis approach shows that the conventional physical
derivation, while certainly valid and fruitful, is not essential, that it often
confuses physics and numerics and that it can be unnecessarily
constraining. For example, we show that lattice-Boltzmann-like
methods can be non-perturbative and can be made higher-order,
implicit and/or with non-uniform grids. Furthermore, our approach
provides new perspective on the relstionship between lattice—
Boltzmann methods and finite-difference technigues. Among other
things, we show that the lattice-Boltzmann schemes are only condi-
tionally consistent and in some cases are identical to the well-known
Dufort-Frankel method. Through this connection, the lattice—
Boltzmann method provides a raticnal basis for understanding
Dufort-Frankel and gives a pathway for its generalization. At the same
time, that Dufort-Frankel is no longer much used suggests that the
lattice—Boltzmann approach might also share this fate. © 1994 Academic
Press, Inc.

1. INTRODUCTION

As is well known, conservation equations written in
Lagrangian coordinates are significantly simpler than the
corresponding Eulerian versions because the former do not
have advection terms. This simplicity suggests that the
Lagrangian forms are better suited to numerical simulation.
In practice, however, “direct” Lagrangian schemes, ie.,
schemes based on direct discretization of the Lagrangian
form of the equations, are not widely used because such
schemes have gridding problems. In particular, fluid flows
that are at all complicated quickly deform a Lagrangian grid
into uselessness. Moreover, mass, momentum, and energy
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are, in general, advected at different rates so that a single
grid cannot be Lagrangian for all the balance equations and
must necessarily retain some Eulerian character [ 1]. In this
paper, we develop and analyze methods for discretizing
systems of conservation equations which overcome these
problems and which can be described as fulfy-Lagrangian.
The key step in our approach to developing these fully-
Lagrangian (FL) methods is a transformation of the usual
field variables of the fluid into a set of “Lagrangian
variables” or “particle coordinates.” These new variables
represent the single “real” fluid by a collection of simple
constant-velocity fluids. In this form, the advection of each
fluid is trivial and Lagrangian discretization becomes
straightforward. The resulting numerical methods, which
are of varying degrees of utility, are what we refer to as FL
methods. It should be said that there is some similarity
between the methods formulated in this way and certain
hyperbolic partial differential equation (PDE) solution
approaches such as upwinding methods [2]} and flux-
vector splitting methods [3]. Our methods are even more
closely connected to the moment method (“beam scheme”)
of Sanders and Prendergast [4] and to the Dufort-Frankel
version of midpoint leapfrog [5] and may be viewed as a
way of understanding and generalizing these procedures.
The FL schemes we develop are also quite similar to
lattice-gas methods which have received much attention in
the last several years [ 6]. The similarity is especially strong
in the case of the lattice-Boltzmann (LB) version of these
methods [ 7]. These LB schemes have been popular because
they are geometrically flexible, trivially parallel, numerically
efficient, and easy to code and they have been applied use-
fully in many applications ranging from flows in porous
media [8] to magnetohydrodynamics [9]. Nevertheless,
despite this work, their status as numerical methods and
their relationship to other known methods has remained
unclear. In this paper, we show that the LB methods are a
useful sub-class of the FL techniques and thus are also
finite-difference methods. This connection provides a new
perspective on the LB methods and allows for their evalua-
tion in numerical analysis terms and for their generalization.

0021-9991/94 $6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



108

We should point out that it has been recognized that LB
methods are finite-difference schemes. The widespread view
has been, however, that they are, and “must” be viewed as,
a discretization of an underlying Boltzmann equation
[10,11]. Now, it is important to appreciate that this
Boltzmann equation is physically meaningful—that is, it has
genuine microscopic meaning—only when the microscopic
scattering rates appearing in it are known. If these rates are
not microscopically calculated, e.g., if a relaxation time
approximation is used, then the Boltzmann equation is
essentially macroscopic and any numerical scheme based on
it is merely a microscopically motivated method for solving
the macroscopic PDEs. LB applications generalty fall into
this latter category [12] and therefore the kinetic theory
interpretation of these methods, while certainly valid and
fruitful, is not essential since the physical content of the
applications is entirely macroscopic. And indeed we show
that one can view LB schemes as simply direct discretiza-
tions of the macroscopic equations themselves.

The conventional view of LB methods stems from the fact
that these methods evolved from the lattice-gas approach
[6] and continue to be viewed as simulating a discrete gas.
The important point here is that the discreteness is regarded
as “physical” so that, for example, to go to “higher-order” in
the “discretization error” requires also going to “higher-
order” in the physics,” e.g., developing Burnett equations.
This lack of separation of physics and numerics by the
conventional Kinetic theory approach is its major drawback
when the purpose is solving macroscopic PDEs. It hinders
evaluation of the LB methods from a numerical point-
of-view (e.g., their accuracy, stability, consistency, etc.),
including their relation to standard finite-difference
methods. In addition, it limits the apparent flexibility of
these methods both physically, e.g, in the constitutive
theory, and numerically, e.g., in developing schemes of
higher-order or with variable meshes. Qur approach, by
constrast, clearly separates the physics from the numerics.
We make no a priori assumptions about the form of a “dis-
crete Boitzmann equation.” In addition, our approach need
not be perturbative; it can be perfectly general insofar as the
constitutive theory is concerned and it can make use of the
standard techniques of numerical analysis for addressing
numerical questions and/or for purposes of generaliztion. In
this way, our approach allows one to determine, under-
stand, and exploit the full flexibility of LB-like schemes.
Most importantly, we exhibit in numerical analysis terms,
the computational advantages obtainable when a given
PDE system is such as to admit the assumptions made by
conventional LB schemes. In these circumstances it is con-
ceivable (not shown) that LB-like schemes could improve
on the numerical efficiency of standard finite-difference
methods.

That the FL/LB methods are derivable from a direct
finite-differencing of the governing PDESs could be taken as
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a demonstration that LB methods are not as novel as they
have been viewed heretofore. As one striking example, we
show that the LB approach applied to the diffusion equa-
tion is identical to the well-known Dufort—Frankel method.
However, for many purposes, it is equally reasonable to
regard the FL/LB methods as a separate class of techniques
much as finite-element methods are viewed as distinct,
despite there being close connections to finite-difference
methods. In these terms, the LB approach provides, for
example, a rational basis for understanding the Dufort-
Frankel scheme and a pathway for developing generaliza-
tions. Conversely, the existing body of experience with
Dufort-Frankel can provide a basis for an overall assess-
ment of the LB approach.

In this paper we discuss applications of FL/LB methods
to hyperbolic and parabolic PDE systems. In these
applications, we develop equations governing the transient
dynamics of the Lagrangian field variables. As with conven-
tional LB schemes, this dynamics may be interpreted—
again attaching physical meaning where there is no
real physical content—as a dynamical evolution of a
“lattice—gas.” In all cases we omit treatment of boundary
conditions and no applications to elliptic PDEs are given,
although this could readily be accomplished in the form of
relaxation procedures. Rather than attempt a general for-
mulation of FL/LB methods we have chosen to introduce
them using a sequence of examples. In Section 2, we study
systems of conservation equations in one space dimension
(1D). The simplicity of the 1D problems allows many of the
issues associated with FL/LB schemes and with their
relationship to conventional finite-difference schemes to be
isolated and clarified. Section 3 develops FL approaches to
the Navier-Stokes equations in 2D and makes connection
with the widely used LB model for these equations.
Finally, in Section 4 we sketch the development of more
sophisticated FL/LB schemes which are higher order,
implicit, or with variable grids.

2. SIMPLE FULLY-LAGRANGIAN AND
LATTICE-BOLTZMANN SCHEMES

In this section we discuss FL schemes for solving various
systems of conservation equations in 1D. For most of these
systems we develop two different FL schemes, one based on
a minimal number of particle coordinates (“minimalist”
schemes} and the other (generalized LB schemes) having
additional particle coordinates which allow the schemes to
meet certain extra conditions and which in some cases make
them equivalent to existing LB methods.

A. 1D Navier-Stokes

We begin by discussing the Navier-Stokes equations
which have been the prime area of application of LB
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methods and are thus the most familiar. Specifically we treat
a 1D version of these equations of the form [ 13]

n,+(me) =0, (2A.1a)
(nu)  + (m) =7 ,, (2A.1b)

where the stress t is given by
T= —p+2uu (2A.1c)

n is the mass density, u is the fluid velocity, p is the pressure,
and g is the viscosity. Assuming an equation of state for p,
e.g., an ideal gas with p = kTh/m, Eqs. (2A.1) form a system
in two dependent variables (n and u). As is well known, if
one further assumes that the kinematic viscosity, v=u/n,
1s constant then (2A.la) and (2A.lb) can be partially
decoupled with v being governed independently by Burgers’
equation (see Section 2B). Here we do not exploit this
decoupling so as to better illustrate the issues involved in
applying FL/LB methods to the 2I3 (see Section 3) and 3D
Navier—Stokes equations.

The first step in developing an FL/LB method for solving
(2A.1) is to perform a transformation to “Lagrangian
variables.” This replaces the Navier—Stokes fluid with a ser
of constant-velocity fluids. Since {2A.1) is a system in two
variables at least two such fluids are required and, because
u can be either positive or negative, these fluids must travel
in opposite directions, A “minimalist” formulation is thus
composed of two constant-velocity fluids with densities r,
and r,, traveling in opposite directions and at the same
speed ¢. In this case, the defining relations of the transfor-
mation are obtained simply from the expressions for the two
lowest moments (density and momentum}

n=r,+ry, nu=c(ry —r,). (2A.2)
Since the number of constant-velocity fluids (r, and r,)
equals the number of dependent variables (# and u), (2A.2)
constitutes a direct change of variables with inverse

n u n u
r1—5(1+z), r2=§(1——z), {(2A.3)
and the governing equations (2A.1) transform to
dr dr,
T;E Fr.+er =7, E:E"z.r_c"z,x= -7, (2A4)
where

12

r T
= _— == 2A5
4 26("1+"2),x+2c, ( )
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and d/dr is the total (Stokes) derivative following the fluids.
These are the continuum equations describing the flow of
two continuous constant-velocity fluids whose aggregate
behavior 1s Navier-Stokes. To devise a numerical scheme
for solving (2A.4) with {2A.5) we must, of course, discretize
and, since for the constant-velocity fluids advection is
simple translation, the natural discretization is Lagrangian.
For instance, first-order explicit upwinding on a uniform
mesh (x = j Ax with j integer) with fixed time step (z =k Az
with & integer) is Lagrangian if ¢ = Ax/4¢ in which case we
have the following scheme:

k41 _ .k k A+l _ & _
", —r‘}._\+Atyj., ryt=ra,

Aty (2A6a)
This numerical scheme, being first-order and explicit, works
reasonably well in simulation, as long as the step size is kept
small. Obviously other Lagrangian schemes are possible.
For example, two similar semi-implicit Lagrangian dis-
cretizations are

k+l_ k k

ryo =y AT,

A (2Ab)
ryl =1y, —A4lyy,

K+l _ ok ka1

T = At
v (2A.6¢)
ra, =ry, —4yiT

Clearly, these schemes are “standard” finite-difference
methods (given appropriate discretization of (2A.5)) for
solving {2A.1). At the same time they may be viewed as con-
stituting various “discrete Boltzmann equations” describing
different “lattice-gases” in which density-particles first
stream from one node to the next and then scatter according
to the local value of . This behavior is the same two-step
dynamics seen in LB methods [7-11, 14], although in the
literature expressions like {2A.6} are generally assumed as a
starting point {usually in the form of {2A.6b)) rather than
derived as above. Also, as emphasized in the Introduction,
the conventional “particle” interpretation ascribes micro-
scopic physical meaning when in fact there is none.

Despite the structural similarities, the FL schemes given
in (2A.6) are not conventional LB methods [ 7] for solving
{2A.1). A main conceptual difference is that, unlike conven-
tional LB schemes, (2A.6a)—(2A.6¢) do not conserve, at each
node of the grid (“microscopically”™), the same quantities
that are conserved macroscopically by the PDEs (2A.1). In
particular, (2A.6a)-{2A.6¢c) conserve mass but net momen-
tum locally. In terms of equations, if ce, (where e, is a unit
vector in the direction of travel of r,) and y,, are the velocity
and local generation rate of r,, respectively, then the local
statements of mass and momentum conservation can be
written as

Lrg=0  Ycey,=0, (2A.7)



110

presuming no nodal involvement. Clearly, the FL models
defined by (2A.6a)}-{2A.6c) satisfy (2A.7}), but not (2A.7),,
whereas conventional LB schemes for the Navier—Stokes
equations satisfy both of these conditions [ 7]. Based on this
fundamental distinction we define generalized LB (GLB)
schemes as the sub-class of FL schemes which conserve the
same quantities both macroscopically and at each grid node
(“microscopically”). As we shall see, conventional LB
(CLB) schemes are a type of GLB scheme in which
additional simplifying assumptions are made. Thus the
relationship among these various classes of FL schemes may
be summarized as FL. o GLB > CLB.

The simplest way of obtaining a GLB scheme is to derive
an FL method for which the particle expressions for all the
conserved moments are correct. In the case of the Navier—
Stokes equations. This means we must demand that the
nodal and macroscopic expressions for the stress tensor
match, ie.,

_Z (cen— ui)(ceaj_ ”j) Ta
o

nodal

macro —
if =

T —po+ulu, +u; ).  (2A8)
In ID, this represents one additional constraint on the
particle coordinates and, therefore, for a 1D GLB model we
need at least one additional constant-velocity fluid. For
reasons of symmetry it seems most reasonable to take this
new fluid to be a “rest state,” ry, and in this case the
equations relating # and « to the r, and defining the trans-
formation are

R=ro+r +r,,

(2A.9a)
(2A.9b)

nu=c(r,—ry),

= —p+2uu =nu—c*(n—ry,),

and the inverse transformation is

I[nue 1 5
"1—5[?4'2("” —T)],

I me 1,
rz—i[—?+-c—3(nu —r)].

1
ro=n—— (nu? —1),
(2A.10)

Using the transformation (2A.9), the governing PDEs
(2A.1) may be written in terms of the constant-velocity fluid
censities as

(2A.11a)

(2A.11b)

rﬂ.r+rl‘r+r2,r+c(rl *rz),x=0’
Fie—TFa,+clry+ra) =0
Since we have more variables here than dynamical

equations, conservation equations for the r, cannot all be
independent. We therefore define
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dr
et = =70, (2A12a)
with which (2A.11} becomes
dr y
B rtera=L=y,
(2A.12b)

L S
ar =r,—c z.x-"?_—?z,

where the expression for y (obtained from (2A.10), and

(2A.12a}} is
l: +r—nu2]
= —| N .
y cl g

Finally, to form the numerical scheme we discretize.
The simplest possible discretization (explicit first-order
upwinding on a uniform mesh) gives

(2A.13)

retl=rk — Ak, it =rf_ +3anf,
(2A.14)
K+l _ ok 1 gk
"2,+ =r3,, T 24ty

Equations (2A.14) form a first-order explicit GBL scheme
for solving the Navier-Stokes equations in 1D. Again the
defining characteristic of the GBL scheme is that at each
node of the grid the systemn conserves the same quantities as
do the macroscopic equations (mass and momentum) and,
using (2A.7}, it is clear that (2A.14) meets this definition. It
is also evident that {(2A.14) with {2A.13) is still not identical
to the conventional LB scheme for the Navier—Stokes
equations.

In general, conventional LB schemes have two additional
ingredients which serve to simplify the rules, reduce dis-
cretization error, and greatly improve numerical efficiency
at the expense of range of applicability. These additional
ingredients are (1) the use of perturbative approximations
for the constant-velocity fluid densities and {i1) the represen-
tation of physics by discretization error. To understand how
these ingredients lead to a CBL scheme we examine first
perturbative approximations to ther,. The primary pur-
pose of these approximations is to lessen the numerical
work involved in computing the y,, ie., (2A.13), at each
step. Since (2A.12) with (2A.13} is merely a recasting of
some (simple) finite-difference scheme, any such savings will
presumably lead to improved efficiency (but potentially
increased error) over the equivalent finite-difference scheme.
Thus, we look for approximations to the r, of the form

Ta=Tatra,

(2A.15)
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where a=0, 1, 2, the r® are (unspecified) “equilibrium” den-
sities and the r} are the deviations from this “equilibrium”
which should be small (jr}) <|r2]) if the perturbation
expanston is to be useful. One way of developing such
expressions is via the Taylor expansions

d?
G a’a
o=y +79 24 ...

=ra+1": 2t s
T dt Y

(2A.16)

where the £2 are characteristic {relaxation) times on which
the r, change and the second equality follows from (2A.12).
Truncation of this expansion at two terms defines relaxa-
tion-time approximations for the generation rates as [ 15]

yi= _r";raz—r—‘;, (2A.17)

where the second equality follows from (2A.15). We note
that because this approximation is independent of the grid,
its use tends to make LB schemes numerically inconsistent
{or, more accurately, conditionally consistent), meaning
that as the grid spacing tends to zero (continuum limit) the
schemes do not, in general, become identical to the original
PDE:s. The object now is to select the r and the 72 such that
the r, given by (2A.10) are well-approximated by the two-
term truncated version of (2A.16) or, equivalently, that the
¥, given by (2A.12) and (2A.13) are well-approximated by
(2A.17). For this selection it is clear that, since the correc-
tion term in (2A.16) is differentiated, the r® must be formed
of the undifferentiated terms in (2A.10). Thus we have

1 1[ne 1
fg=n—?(m!2+17), f?=5[7+?("u2+£’)],
T ORI (2A.18)
22 c & P '

These expressions are identical to the forms assumed ina 1D
version of the conventional kinetic theory-based approach
for the equilibrium densities [ 13, 15]. Now, for agreement
between (2A.10) and (2A.16) with (2A.18) to first order in
the !, we must have that

kT
2uu =1, (cz — —HT) (mu)  — (),

(%)
AT | —— Ju,,
m

(2A.19)

which is independent of the r, {and thus :9=1¢!=12=1,).
As shown by the second equality, (2A.19) is satisfied if (i) »
is slowly varying, (ii) the “energy” term, {nu?) ,, is negli-
gible, and (iii) 7, is given by
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(2A.20)

where v is the kinematic viscosity. The neglect of the energy
term is equivalent to the assumption that |u/c| <1 and is a
manifestation of the numerical inconsistency inherent in
{2A.17). In any event, under these assumptions we conclude
that one can simulate 1D Navier—Stokes behavior using

At
k1 k k o*
o =r0,_';'{”0,-—r0,-)’
L3
At
k k 13 ok
rll+l=r1,_lft—(rh——rh), (2ZA.21a)
r
k+1 k k ok
Py = 2 — (5, rah

where 1, is defined by {2A.20). Similar schemes result from
the other Lagrangian discretizations such as those in
(2A.6b) and (2A.6¢). For example, a semi-implicit scheme
like (2A.6b) is

At
k+1 k X ok
r0i+ =r0i_—(r0:_r0i ),
‘ri‘
At
K I3 0%
r’]‘:]‘ =rl.‘—?(rli—r15)s (2A21b)
r
At o
e =r§._r_ (r3—r3),

-

which is computationally explicit and in practice outper-
forms (2A.21a).

The schemes defined by (2A.21) with (2A.20} represent
valid schemes for solving the 1D Navier-Stokes equations.
Being inconsistent their “order” is not an unambiguous con-
cept [16]. However, in terms of discretization error, they
are first-order schemes and to be useful this error must be
kept small. Alternatively one can develop higher order
methods. The conventional LB approach does this by
representing physics using discretization error. To see how
this works we write down the “modified” versions of (2A.1)
in the constant-velocity fluid coordinates, ie., the PDEs
“actually” solved by (2A.21) including the lowest order dis-
cretization error terms. For the case of (2A.21b) (which
corresponds to the CLB scheme actually used) we obtain

(ro+ri+ry), +elri—r3),

At
= *'2_("0'5"'1‘*"'2).“

2

- (rl +r2)‘xx9

YT {2A.22a)



112

ofr —r3)  + cHr + ra) .

c At
= _T (rl _rZ),ss
Ax* ¢
- ZAI (rltrZ)..(x' (2A22b)

Approximate forms of these equations may be had by
expanding them according to (2A.15) and (2A.18). In effect,
this repeats our earlier derivation, (2A.19), but with the dis-
cretization error now included. In doing this it is important
to recognize that the discretization error terms in {2A.22)
are terms of a second expansion. Because we want this
discretization error to represent physics, we assume that
equivalent terms in this expansion and in (2A.15) are of the
same order, ie., r®x O(1), ri~ O(dx, 4t), etc. Then, to
lowest order, the equations of mass and momentum balance
are (using (2A.15), (2A.18), and (2A.22))

n,+(nu) =0, (2A.23a)

(m) ,+ (mu* + p) =0, (2A.23b)

and at first order we have

n, + (nu) .
A
= _éin ;r+—[(nu2+P) xx=07 (2A24a)
2 2 g
(nu) ,+ [n* + p—c*ri] .,
At Ax?
= ——?_—(nu),,,—z—m(nu),xx, (2A.24b)

where the right side of (2A.24a) is zero by virtue of (2A.23b).
Equation {2A.24b) still contains r} for which the following
expression can be obtained using (2A.17) with (2A.13),
(2A.16), and (2A.18),

mc?

rl=t, [(l ——k—T—) (nu) . +é (nuz)‘,]. (2A.25)

Equation (2A.24b) then becomes

{nu) , + |:nu2 +p—c? (1 —%)(r, —%) (nu)‘x]x
= (Tr—%) (nuz).rx’

which is precisely the same as (2A.1b) if (i) n is slowly
varying, (ii) the right side of {2A.24) is neglected as higher-

(2A.26)
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order [|ufc] <17, and (iii) 7, (to be used in (2A.21b)) is
selected so that the kinematic viscosity v is given by

_0_2(1 _k_T)(T _:‘H)
=3 m2 \"rT 2 )

These assumptions are the same as those made earlier,
except for the modified viscosity formula. The latter is
modified by a numerical “anti-viscosity” term (the A4t
contribution} which results from the implicit upwinding of
(2A.21b) [167]. Thus using the t, as given by (2A.27) has the
significant benefit that it makes {2A.21b) a second-order
scheme with essentially no additional computational cost.
The relation {2A.27) is identical to that obtained in a
conventional kinetic theory deveiopment of the LB scheme
[131.

Our numerical methods approach to LB schemes makes
apparent that the two ingredients needed to create a CLB
scheme from a GLB scheme are largely independent of one
another. As we saw in connection with (2A.20), the pertur-
bative approximation (2A.16) may be implemented without
using discretization error to represent physics. The reverse is
also true. If we use the explicit upwinding formula (2A.21a)
with (2A.16) and take z, to be zero (i.c., no perturbative
corrections) then correct simulation is still possible by
having the physical viscosity entirely represented by
numerical viscosity [ 16]. (Note that this cannot be worked
with (2A.21b), where the numerical contribution is an anti-
viscosity.) That is, the grid and time step must be such that

(2A.27)

(2A.28)

With 1, zero, (2A.17) demands that r, equal r? at each time
step. Therefore this version of the CLB scheme proceeds in
two steps with the fluids first moving and then the collision
outcomes are decided directly and immediately by (2A.18).
This scheme is the simplest possible CLB scheme for
Navier—Stokes simulation. It should be said, however, that
(2A.28) is a rather strong restriction on the discretization
and the resulting scheme is rather inflexible. The inclusion
of the relaxation time greatly increases flexibility and the
cost is minimal involving only the additional calculation
of (2A.17).

We have shown that (2A 21b) with (2A.27) does manifest
1D Navier-Stokes behavior and we have thereby exhibited
the numerical foundations of the conventional LB model
[7-11, 14, 15]. In this, we have seen that the perturbative
treatment of the CLB scheme buys a significant simplifica-
tion of the collision rules while the representation of
physical effects by discretization error raises the order of the
scheme at no computational cost. It is conceivable that
these advantages could make CLB-like schemes more
effictent than standard finite-difference schemes even in
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mainstream applications. At the same time, as pointed out
in the Introduction, the perturbative character of the CLB
scheme is its main disadvantage: It makes the scheme
numerically inconsistent and it will fail when the viscosity is
small enough that {2A.16) truncated to two terms no longer
provides a good representation. This problem cannot be
remedied within this framework except by using the original
non-perturbative FL/GLB schemes. The latter provide
lattice-Boltzmann-like algorithms which are not susceptible
to the inconsistency errors and instabilities associated with
CLB schemes. (Of course these schemes would still be
subject to other error and stability requirements, e.g., a
Courant (CFL) condition.) However, it should be said that
such schemes would have tlittle direct computational
advantage over conventional finite-difference methods and
s0 would be potentially advantageous only if, for example,
they are more easily coded on a massively parallel com-
puter.

The above CLB scheme has other disadvantages too. For
example, it depends on specific constitutive assumptions (it
fails if the density is not slowly varying) and it constrains the
discretization (it would appear to fail on a non-uniform
mesh). However, these disadvantages can generally be
removed by making the CLB scheme more sophisticated.
One such sophistication which allows for increased con-
stitutive flexibility is simply to introduce additional con-
stant-velocity fluids. Thus, if in the above GLB scheme we
introduced two additional particles going right (r;) and left
(r,) with speed 2¢, then one can readily show that

1
r3=n—;(nu2+p}—9(r§’+r3),

1 1
e Lo —p st @)
o 1 me 1 3 0 I
r2=5 —?+?(nu —P) +2r3+61”4-

An expansion based on {2A.16) with (2A.17} is useful if
~ 2 d i 0 0 0
Jpu  =T,c” () +r944r54+4r9),  (2A30)

a condition that can be met (at first-order) if

kT )nu
me? ) 6c’

(2A.31)

,u . nou
T,=75 and ri—ri=—-—-11
3ecny : c

where #, is an arbitrary “reference” density. A reasonable
way of selecting r$ and r§ is simply to assume that r§ is zero
if ¥>0 and r{ is zero if ¥ <0. This scheme is no longer
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constrained to have slowly varying density and (2A.17) with
{2A.29) and {2A.31) will successfully simulate compressible
Navier-Stokes flow in 1D so long as the viscosity is large
enough that the two-term truncation of the expansion
(2A.16) remains reasonable.

B. Burgers’ Equation and 1D Biased-Diffusion

Two simpler areas of application of FL/LB schemes are
to Burgers’ equation [14] and to biased diffusion, e.g., as a
model of semi-classical electron transport in semiconduc-
tors [17]. A discussion of these cases is of interest here
primarily because it further clarifies the relationship
between the FL/LB schemes and conventional finite-
difference methods. In 1D, the relevant equation for these
applications can be written as the single conservation law

2+ =0, (2B.1a)
where

z=u, f=3iu’—vu, (Burgers equation}, (2B.1b)

z=n, f=—unE—Dn, (biased diffusion), (2B.lc)

and u, 1, v, E, u, and D are the fluid velocity, electron den-
sity, viscosity, electric field, electron mobility, and electron
diffusivity, respectively.

Since (2B.1a) can be combined with (2B.1b} and (2B.1¢)
to eliminate £, both Burgers’ equation and biased diffusion
have only one dependent variable. Nevertheless, a
“minimalist” particle transformation still requires two
constant-velocity fluids since f/z need not equal ¢; having
this “extra” particle means that the “minimalist” scheme will
also be a GLB scheme. Using the same constant-velocity
fluid coordinates as in Section 2A, the new vartables are
defined by (2A.2), the inverse transformation is (2A.3}) or,
using {2B.1b) and (2B.1c¢),

1 | (2B.2a)
r,== (u w2yl x) {Burgers’ equation),

2 2c c

1 ( uEn  Dn x)
n=qgip————71,

2 ¢ c

, D (2B.2b)
ry== (n HER, _n_x) (biased diffusion),

2 ¢ c

and (2B.1a) transforms to

Fiotra, el —r,)=0 (2B.3)
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The latter may be split into

dr
a,—tlE"u‘*'Cf],xE? {2B.4a)
and
dr
—df =ry, b0, = - {2B.4b)

where the y’s that are appropriate for Burgers’ equation and
for biased diffusion may be found using (2B.4a) with (2B.2a)
and (2B.2b), respectively. Then, using the Lagrangian
discretization of {2A.6b) we reach the FL/GLB scheme

k+1 __ .k k
L =0ty At,

ritl=ri—yiar  (2B3)
We note that at the nodal (“microscopic”) level these rules
conserve the same quantity (« or #) as does the governing
PDE and thus that this scheme is indeed a GLB scheme.
Now, to derive a conventional LB scheme from (2B.5)
we apply the two additional ingredients discussed in
Section 2A: perturbative treatment of the dynamics off of
some “equilibrium” state and use of discretization error
to represent physics. Because of the latter we start
with the “modified” version of the governing dynamical
equation (2B.1a),

Ax?

At
{ri+ra},+elri—ry) = —3*("1 +r2),n—ﬂ7("1 +75)

—Ax(ry—ra) {2B.6)
Next, we develop a perturbation expansion of (2B.6)
according to (2A.15) about the “equilibrium” densities,

{2B.7a)

. (2B.7b)
8 =g (1 +EC—) (biased diffusion),

obtained as before by dropping the derivative terms from
(2B.2). Carrying out the procedures of the previous section,
at first order in r] we have agreement with (2B.1a} with
(2B.1b) or (2B.1c), if the usual consistency condition
| fiz¢| < 1 is satisfied and

v or D=c2(t,~—£).

3 (2B3)

M. G. ANCONA

Thus, both Burgers’ equation and biased diffusion may be
simulated using (2B.5) with (2A.17), (2B.7), and (2B.8).

We note that as in Section 24, it is again possible to use
explicit upwinding (as in (2A.6c)), take 7, equal to zero and
represent physical viscosity/diffusion entirely by the dis-
cretization error. Again, this approach is rather limited in
that it sets rigid requirements on the grid and time step; i.e.,
it demands Ax?/(24t)=v or D, However, when such a
condition can be met, (2B.5) with (2B.7) will simulate
Burgers® equation or biased diffusion using the ultra-simple
two-step rule of first moving the density-particles and then
redistributing them according to {2B.7). This CLB formula-
tion is essentially identical to that devised in Ref. [17] (for
2D).

We again emphasize the role of the distinguishing features
of CLB schemes, the perturbative treatment of the
dynamics, and the use of discretization error to represent
physical effects. The main advantages are that they produce
simpler, more computationally efficient “collision rules,”
e.g.. (2B.7) instead of (2B.2), and that they raise the “order”
of the scheme; eg., use of (2B.8) makes the spatial dis-
cretization error second-order. The disadvantages again are
that the scheme is inconsistent, its discretization is inflexible
and it restricts the constitutive theory, eg, if D is
inhomogeneous the correct form for the diffusion tertn in
(2B.8) is not Dn . as the discretization error demands
but (Dn ). To some extent as in Section 2A these
disadvantages can be ecliminated by introducing more
particles (e.g., see Ref. [17].

The LB methods discussed to this point appear to
be unrelated to conventional finite-difference schemes.
However, this is not the case for the schemes for Burgers’
equation and biased diffusion as we now show, For biased
diffusion the scheme defined above may be written as

L) . Ky -
r’fji-ll :[1 i—i(l +E):l r’fi‘l-i(l —E) r'z‘},
{2B.9)
5 = s _
ré;:l =§(1 +F) rfj-{—[l _E(l —E)] r’z‘}_,

where 5= dt/tr and E =puE/c. These equations are readily
combined to eliminate r, or r, and to thereby obtain
separate difference equations for each fluid as follows:

,gj“:[l,%(lﬂ?)]r;_,
+|:1_F§(l__E):|rf';+|_‘(l“é')r’;j"l. (2B.10)

That these equations are identical implies {using (2B.2))
that # also must satisfy this same difference equation. It is
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then easily shown, using (2B.8), that the two-time-level
formulation given in (2B.10) is precisely the same as the
Dufort—Frankel method for solving (2B.1) [5]. Dufort-
Frankel is a well-known and somewhat peculiar scheme
with the unusual combination of properties of being
explicit, second-order, unconditionally stable { when applied
to the diffusion equation), readily applicable to more than
one space-dimension, and numerically inconsistent (or con-
ditionally consistent). Apart from the issue of stability, we
have already scen that all of these properties are associated
with LB schemes and thus that a close relationship exists
between these schemes is not so surprising. The direct con-
nection established here provides {we believe} a much more
rational understanding of the Dufort-—Frankel approach, a
scheme which is conventionally derived by a seemingly
arbitrary modification of the midpoint leapfrog scheme [5].

Concerning stability, in general, the physical basis of the
usual kinetic theory approach to LB methods is not well
suited to analyzing stability (sce Ref. [11] for efforts to
understand stability on physical grounds in terms of
entropy). It is a significant advantage of our approach to
FL/LB methods that we can make direct use of the tools of
numerical analysis for stability analysis, Now, for the simple
diffusion equation Dufort-Frankel is known to be uncondi-
tionally stable so long as the diffusion-constant is positive
{as it must be by thermodynamics). And since we have
shown the LB scheme to be identical to Dufort-Frankel, we
must have (from (2B.8)) that the LB scheme is stable so
long as 7, is greater than 4¢/2. However, with a bias present
or in the case of Burgers’ equation, the LB/Dufort—Frankel
scheme can also go unstable by violating a Courant condi-
tion. The stability plot resulting from a von Neumann
analysis is shown in Fig. 1 (for biased diffusion; the plot for
Burgers’ equation is guite similar). Numerically, however,
the scheme is found to be less stable than Fig. | suggests; in

3 [ T T T

2.5 FUNSTABLE 3
o L F N
2 F STABLE A 1
[ <
o 15¢ i
L : ]
-— P e . . e e ——- = h
o VF - - S A
[4}] o ]
M osfF N-STABLE 3
0 E L 1 1 ]
0 0.5 1 1.5 2 25

Time step

FIG. 1. The von Neumann stability of an LB scheme for biased diffusion
is plotted as a function of the scaled time step (At/7,) and scaled electric
field (u£/¢). Numerically, the scheme performs poorly when the Courant-
like condition pE/fc < 1 is violated {outside the region labeled n-stable).
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particular, we find the scheme to be unstable or unreliable
when the Courant-like condition pE/c < 1 is violated.

As a final remark, we wish to point out that the identity
between LB methods and the Dufort—Frankel scheme seen
above does not always hold. For example, in the case of the
Navier-Stokes equations in Section 2A, the LB method
treats momentum balance by a Dufort-Frankel-like
discretization, but mass balance is treated in a way most
akin to flux-vector splitting [ 3]. Nevertheless, the many
similarities between Dufort-Frankel and LB schemes—
explicitness, stability, order, and lack of consistency—
provide a basis for a preliminary assessment of the LB
approach [18]. In particular, that the once-popular
Dufort-Frankel scheme is no longer used (because of its
numerical inconsistency, because of the development of
other methods, and because of increases in computational
power}, suggests that the LB methods will share a similar
fate. More optimistically, it may turn out that in massively
parailel computing environments the parallelism of LB
methods (and perhaps also Dufort-Frankel) will resuit in
their continued use.

C. 1D Ballistic Transport

In this section we present FL schemes for the equations
describing ballistic transport in one dimension. These
equations are, among other things, physically relevant to
electron transport situations in ultra-small semiconductor
devices. Moreover, from a numerical viewpoint, these equa-
tions are of interest because, with no dissipation [ 19], these
equations are much like the Euler equations and one cannot
derive a stable LB scheme for this system by the conven-
tional kinetic-theory method of derivation. Nevertheless an
LB-like scheme can be developed. The governing fluid
equations for the 1D ballistic transport situation are

n 4+ {ny) =0, (2C.1a})

nF
(nu) ,+ (mu?)  =—,
m

{2C.1b)

where F is the body force {per charge) acting on the gas.
Again in this case we have two dependent variables and, so
in a “minimalist” FL model, we use two particle coor-
dinates. Also since the gas moves in one direction only, it
seems most reasonable to take these coordinates to be a
“rest state” and a “motion state” of constant speed
{although a model based on the right and left states of
Sections 2A and 2B works too). Thus,

R=ry+r, nu=cr,, (2C.2)
and the inverse transformation is
u nu
r0=n(1——), r=—. (2C3)
c c
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Equations (2C.1} transform to

r(),.r= _ys rl.1+crl‘x=}’9 (2C4a)
where
cf rgr; nF
=—[—— —. 2C4
! 2(’0+"1).x+mc (2C.4b)

To derive a simple numerical method we again use implicit
first-order upwinding on a uniform mesh (as in (2A.6b)) to
obtain

(2C.5)

B+l _ Lk k
ro. =g AtyY,

ritl=rk + Ayl
These equations define the FL scheme. Again, this scheme
constitutes an algorithm quite similar in structure to
conventional LB schemes. However, at a nodal level
{“microscopically”) as in Section 2A, (2C.5) conserves only
mass and not momentum, (2A.7). To conserve both, i.e., to
have a GLB scheme, we need to again impose an additional
constraint on the next higher moment. For the system
(2C.1) this is again (2A.8), here with ™ =0. And, as
earlier, imposing an additional constraint requires an addi-
tional particle coordinate; we take the constant-velocity
fluids to be, at rest (ry), right (r,), and left (r,) and, using the
usual procedures, we obtain

K+l _ kg k
ro, =ro,—4ty;,

nF At At
r’l“-i-ll =r’fi+ ™ 7};“’.‘, (2C.6)
w1 hF AU At
r;:‘l T dme +7?f’
where
Fu At 2 Fu At
yzn u2 +At[nu(1—u—2)] ;n—uz—+dr[nu]!x,
me )]l me

with the approximation following when |u/¢| < 1. Evidently,
this scheme balances both mass and momentum at each
node. Note that a body force contribution, nF At/me,
appears in the equations for the moving particles (because
only on these can the body force do work}); this is the rate
of supply of momentum by the body force to the particles at
the particular grid node. The purpose of deriving the GLB
scheme in order to apply the conventional LB approxima-
tions does not, however, lead anywhere. In particular, since
the stress contains no differentiated terms, the r, will not
contain such terms and thus cannot usefully be represented
by an approximation of the form (2A.16). In addition, since
the discretization error (of the next order) produces only
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numerical diffusion or viscosity and neither of these is pre-
sent physically, such an error cannot be used to represent
physics. Thus none of the computational savings associated
with. the assumptions of conventinal LB schemes can be
exploited for ballistic transport. And, as with the Euler
equations, it is uncertain whether sufficient reason remains
to prefer an FL/LB scheme over conventional finite-
difference methods.

D. 1D Gas Dynamics

As a final simple example, we examine 1D gas dynamics,
a situation in which energy is balanced, as well as mass and
momentum. The governing equations are

n,+(nu) =0, (2D.1a)
(nu} , + (mu®) 4+ p =0, (2D.1b)
e, +(en) .+ (pu) =0, (2D.I¢)
where
e=ne+ snu’, (2D.1d)

ne is the specific internal energy of the gas and we assume
the perfect gas equation of state

P=(yr_l)nss (ZDIC)
with y, being the ratio of specific heats. Together these
equations form three PDEs in the variables #, u, and p. A
“minimalist” FL model is thus composed of three constant-
velocity fluids; selecting these as ry, 7y, and r, (at rest, right,
and left), we have

R=ro4r +r,, nu=clr,—ry), p=c(r +ry)—nu’.

(2D.2)
The PDEs then transform in the usual way to
Fo = —V=VYe, Fi,+0h 225}) Fy,—CFy =Zzy2
N L N X 2 1 T WX 2 1
(2D.3a)
where
3 1 2 ,
Y=".1 Pl + pe; [nuc* —3up—nu’] . (2D.3b)

And discretizing as in (2A.6b) we obtain the FL scheme

K+l _ ok k Kl k1 gk
ro, =To,—Aty), P =+ 2405, (2D4)

k+1_ k4 1 k
ral =ra Aty
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In accord with our earlier discussion, this minimalist FL
model conserves mass and momentum at each node, (2A.7),
but does not conserve energy. To achieve the latter we
would expect to require a matching of the next higher
moment,in this case, the heat conduction

0 = qmacm = gicre = % > (ce,—u}jce,—~ul’r,. (2D.5)

This being a scalar condition in 1D we would then expect to
need one additional particle coordinate for a totat of four.
These expectations are not borne out, however, for the
following reason. It is readily shown that the second term in
(2D.3b) equals qf‘;i"“’/cz, and forcing (2D.3) will result in
this term making no contribution te the “microscopic”
energy balance. However, the contribution of the first term
will rot vanish and the local energy balance will read

3I—yp.
CZ

z €., P, = pu,x #* 0. (2D6)

The right side vanishes, i.e., local energy balances, only in
the ideal (1D) case when y.=3. For the non-ideal case,
there is energy stored in internal degrees of freedom (in
addition to in the translational degrees of freedom) and to
achieve local energy balance these degrees of {freedom must
be included. Thus, a GLB scheme as we define it, is not,
in general, possible for cases where energy is explicitly con-
served unless the internal degrees of freedom are inciuded,
e.g., using additional constant-velocity fluids. For the ideal
case, the perturbative approximation used in the CLB
schemes are also not useful for our particular case because
the stress and/or heat conduction have no gradient terms;
however, if viscosity and/or heat conduction were included
a CLB approach could be developed in the same way as
previcusly [20], Of course, in all cases the “minimalist” FL
scheme is viable and might be advantageous.

3. NAVIER-STOKES EQUATIONS IN 2D

In this section we build on the results of Section 2A,
developing a “minimalist” FL scheme and a GBL/CLB
scheme for the practically important case of the Navier—
Stokes equations in 2D. Almost all of the issues related to
these schemes arose in the 1D case (Section 2ZA) and so our
treatment here is much briefer, emphasizing only new issues
and final resuits. The Navier-Stokes equations are

n,+V.(nu)=0, (3.1a)
(nu) ,+ V- -(nam)=V .1, (3.1b)

where
r=—pl+AIV.u+u(Vu+VTu), (3.1c)

i17

p is the pressure and g and A are the shear and bulk
viscosities, respectively. Assuming an equation of state for p,
e.g., an ideal gas with p=kTn/m, (3.1) form a system in
three dependent variables, #, u,, and «, (in 2D). Thus a
“minimalist” scheme would involve three constant-velocity
fluids and a honeycomb lattice would be appropriate.
However, because of the complication of non-equivalent
points in such a lattice, we introduce an extra constant-
velocity fluid and work instead on a square lattice. The
densities of each fluid are given by r, (with a=1, 2, 3, 4,
corresponding to east, north, west, and south, respectively)
and we have
nH=ri+ra+rytry,

nu =clri—r;), nu;=c{r,—r,).

(3.2)

Because of the “extra” fluid, (3.2) does not lully define the
change of variables and we need an additional equation
which is essentially arbitrary and may be chosen for con-
venience. We assume an “isotropy” condition much like that
assumed in Ref [17],

(3.3)

H
r1+r3=5=r2+r4,

where the second equality follows from (3.2),. The
governing PDEs then transform in the usual way and an FL
scheme can be obtained by an appropriate discretization.
For a GLB model, in addition to the three previous con-
straint equations on mass and momentum, {3.2), we require
that the next higher moment (stress} be matched, ie.,
{2A.8). The defining equations of the model are then

n=3r,, nu=cy e, , T=nul—-c’) e.e,1,
a a o

{3.4)

These represent five independent equations relating the
r, and as such define a minimal GLB set of five particle
coordinates. (N.B. Although (3.4}, has three unequal
components, it represents only two equations because
tr T =nu-u—c’n does not define an independent equation
relating the r, to » and u.) The simplest uniform grid with
coordination greater than or equal to 5 is a hexagenal grid
with lattice vectors,

- -1
e,=1cos [ﬂa—?’—n]-&-jsin [75&{3;)], a=1,..,6.

(3.5)

We note that this grid is that used by conventional LB
schemes and in fact it was the recognition that a hexagonal
lattice suffices for a lattice—gas representation of 2D fluid



118

mechanics that first triggered interest in such models [61. In
any event, to use this mesh we must define a sixth particle
coordinate. For this purpose, we again use an “isotropy”
condition like (3.3) '

=

{3.6)

ryt+ritrs=—=ry+rytrs.

(o]

Equaticns (3.4) and (3.6) then define the GLB particle coor-
dinates on the hexagonal lattice, With some algebra one can
show that the inverse transformation is

ne,-u
3¢

ra=g+ +%[2ea-(nuu—r)-ea—nu-n+trr],

3.7

and the governing PDEs become

Fait ey Vr =1, (38)
where the y.’s may be found by substituting (3.7) into (3.8).
Note that only three of these y,’s are independent while the
others are related by (2A4.7). Finally, a simple Lagrangian
scheme (the implicit first-order upwinding scheme of
{2A.6b)) based on (3.8} is
rt+Aat, x+e, Ax)y=r 1, x}+ Aty (t,x). (39)
This completes the specification of the GLB scheme for
solving the 2D Navier-Stokes equations. We now apply the
approximations of conventional LB schemes. As before,
to deal with the discretization error we use the modified
versions of the governing PDEs (3.1) in the particle
coordinates for the scheme (3.9). We then expand the
particle coordinates about an “equilibrium” state using
(2A.17) and find the PDEs in the original field variables
satisfied at each order of the expansion. As previously, a
useful “equilibrium” state about which the expansions can
be made may be read directly from (3.7) simply by dropping
the derivative terms. We obtain

ne, G
Pl=— =

n
i 3¢

+% [2(e,-u)—u-u], (3.10)

which is identical to the form assumed in Ref [15].
Carrying out the expansions to first order, we find mass
balance (3.1a) satisfied and momentum balance (3.1b) also
met if the usual consistency condition |u/c| < 1 holds and

2
N %ﬂ I +% (r,_%) [V(ru)+ Vi) ] (3.11)

As with {2A.23), this expression is identical with (3.1c) if we
assume that » is slowly varying [or constant), the shear
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viscosity is given by {2A.27), and the flow is incompressible
or the bulk viscosity negligible. Thus, under these condi-
tions the CLB scheme (3.9) with (2A.17), (2A.27), and
{3.10) executes 2D imcompressible Navier-Stokes flow.
And, as in Section 2A, so long as the perturbative basis of
the scheme remains valid, various restrictions on this
scheme such as the slowly varying density or the uniform
grid may be lifted. However, when the viscosity is small
and the perturbative expansions become increasingly
inaccurate, the CLB scheme must be abandoned; again, the
FL/GLB schemes remain valid for this case.

4. OTHER FULLY LAGRANGIAN AND
LATTICE-BOLTZMANN SCHEMES

In general, FL methods can be made co-extensive with
finite-difference methods just by recasting the finite-
difference methods in constant-velocity fluid coordinates. In
this way one can obtain various FL methods which are
precisely equivalent to existing finmte-difference schemes.
Altcrnatively, one could proceed as earlier, transforming to
Lagrangian variables and rhen discretizing. These two
approaches will generally yield diiferent schemes and which
is to be preferred is at present unstudied. In any case, either
procedure may be used to construct LB-like schemes which
are higher-order, more stable, implicit, with variable mesh
or variable time step, etc. Furthermore, when the conven-
tional LB approximations are applicable, such schemes (in
GLB form) may be turned into CLB schemes for maximal
simplicity and computational efficiency. In this section, we
discuss various examples of such more sophisticated FL./LB
methods. No attempt is made to evaluate these schemes
either analytically or numerically so their value is unknown.

A. Higher-Order Schemes

Higher-order FL/GLB methods are readily developed
using procedures discussed elsewhere in this paper. Further-
more, CLB schemes can still be devised, although, with the
scheme already higher-order, the idea of raising the order of
the scheme by interpreting the discretization error physi-
cally is no longer as useful. Also, errors associated with the
inconsistency of such schemes could negate benefits of
having higher-order discretization error. In any event, as a
simplest example of a higher-order FL/LB scheme, we
develop a scheme for biased diffusion. In particular, dis-
cretizing (2B.4), using an explicit second-order upwinding
(as in the semi-implicit scheme (2A.6¢}), we obtain

1 C
TR Ay e KAt I A
1
et AR (A (44.1a)

r
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1 c
Zl—t(r"ij+1 _r’{j)——Ex_(-3r’{j+4r’{j“ﬁr’{j”)
=‘V§}+ ~ (rAJrl ( 0]k+1)’ (4A.lb)

When the exact expression for y, = —7, is used, the scheme
is an FL/GLB scheme which we note no longer meets the
definition of a GLB scheme at a single grid point, (2A.7).
That is, it does not conserve mass at a single grid point but
rather only over three grid points, a fact that merely reflects
the increased “spread” of the higher-order method. When
the relaxation time approximation (2A.17) with (2B.7b) is
implemented, (4A.1) becomes a CLB scheme. In this case,
the semmi-implicit discretization above can be made com-
putationally explicit as follows

;lc,“ 4s+1) [(2+s—sEX _rllcf'+4ri—l _r’{j—i)
+s(1 —1‘~f)(—r’.{§j+4r’5f+1 —r’.;_j_“)], (4A.2a)

§;+1 4(s+1) [s(1 +E)(—r’fj+4r‘l‘}__l-—r’|‘;__2)
+(2+s+sE)(—r’§j+4r§j+l‘r’;}“)}, (4A.2b)

where s and E are defined as in (2B.9). This scheme is no
longer equivalent to the other semi-implicit form discretized
as in (2A.6b) which is also no longer computationally
explicit. Finally, following procedures used in earlier sec-
tions, it is readily shown that (4A.2) correctly simulates
biased diffusion if the usual consistency condition, ju/c| <€ 1,
is met and 7, is related to the diffusivity by D=1, ¢% The
latter does not contain a numerical diffusion contribution
{like that in (2B.8)) because of the higher-order discretiza-
tion as mentioned above. Since this scheme does not need to
use numerical diffusion {which is homogeneous) physically
to achieve higher order, it could be advantageous when the
physical diffusivity is inhomogencous.

B. Implicit Scheme

Since in this paper we make no assumption as to the form
of the *“discrete Boltzmann equation,” but rather we
just apply standard finite-differencing, developing implicit
numerical schemes is easy. For example, for 1D Navier—
Stokes as discussed in Section 2A, a fully implicit
Lagrangian discretization precisely analogous to those in
{2A.6) yields

k+1

r k+1
F+1

P +dyitl, it =+ Anitl (4B1)

As with conventional implicit schemes, this scheme requires
the (approximate ) solution of a non-linear algebraic systern
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at each time step. Whether implicit methods are useful in an
LB context is, of course, a scparate question which we do
not attempt to answer here.

C. Variable-Mesh Schemes

In developing variable-mesh FL/GLB schemes [21] one
needs to appreciate a fundamentai point that does not arise
in the uniform-mesh case. This is that, on a non-uniform
grid, the distinction between mass and mass density
becomes important because the volume of the grid cells is
not constant. And since an FL scheme should advect and
conserve mass and rot mass densily, it becomes most
convenient to work with “mass variables” rather than mass
density variables. As a simple example, we ireat biased-
diffusion in 1D and, instead of using the constant-velocity
fluids of Section 2B we now define two new (non-constant
velocity) fluids with local masses (per cell per unit area) of
m, and m,. The masses are related to our earlier densities by
m, =c¢, dir, and m, = ¢, Atr,, where ¢, and ¢, are the local
velocities of the two fluids. The change of variables is now
defined by

my
cy At

ny my—

n= \ R
c, At At

(4C.1)

and, transforming the PDE (2B.1a) with (2B.1c), we find

m1.1+clml,xzyl! mz.!_ (4C2)

Cafy  E V2= —V-

An implicit first-order upwinding (with 4x,=x,—x; ;)
then yields

1 ¢
I(mjlcf+l_m"cl)+dxrl+1(mllcfr‘1 m§1+1) yll(j’
| ’ (4C.3a)
I(m’;l“ﬁm‘;,)u (mi ! th)_}’ZJ’
which is fully Lagrangian if we select ¢, = 4x; /At and
¢y = Ax;/At so that
mitl=mk LAk mhTl=mh 4 dnk. (4C3b)

This is an FL/GLB scheme on the non-uniform mesh.
As usual, the inter-conversion rates y are found by direct
substitution.

Developing a CLB version of (4C.3b) is significantly
more difficult on a non-uniform grid for several reasons.
First, because the velocities of m, and m, are not constant,
the expansion of (2A.16) will contain derivatives of this
velocity which can cause appreciable error unless the grid is
very slowly varying. Below we develop such a scheme
primarily for purposes of illustration. The second reason
that developing a variable-mesh CLB scheme is more dif-
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ficult is that, on a non-uniform grid, numerical diffusion/
viscosity is inhomogeneous and thus is less useful for
representing homogeneous physical diffusion/viscosity.

To develop a simplest CLB version of (4C.3b) we just
implement the perturbation expansions as before. Here,
however, the relaxation time must depend on the direction
since, all other things being equal, the larger Ax, the smaller
the probability of moving in that particular direction. From
(4C.1) and (2B.1c), the “equilibrium” masses are given by

mt = cyh(c; — uE)

c.nfe, —uk
; mo=2(1 ,Ll)
e+

2
’ e+

(4C.4)
and, using (2A.17) (written for m, instead of ) with

1 _ Cl 2 _ C2
N Ty
7 C] + CZ 7

i

i1,
Yoeite,

as is required by mass conservation, (4C.3b) becomes

. At
ot = =),
’ (4C.5)
de L N

Following earlier procedures we find that (4C2) will
simulate biased diffusion if |u/c] is small, 7,; varies according

1o
Ax; Ax, At
D =4_sz—j (T,}_?), (4C6)

and the grid is very slowly varying (dx;,,=4x;(1+
0(4x?))), as indicated above.
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